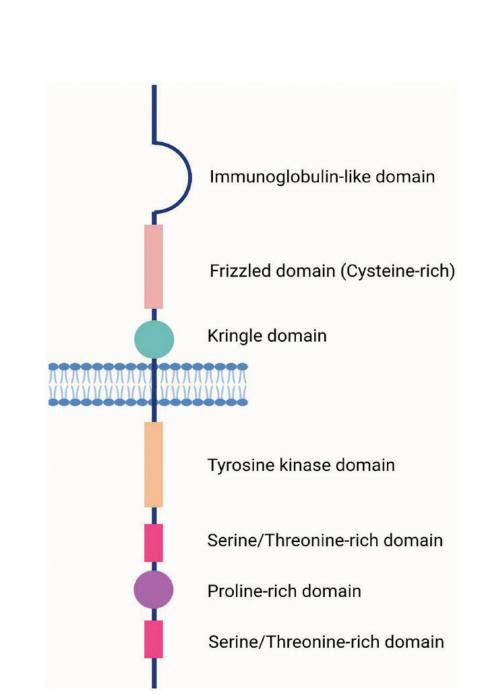


A MULTI-CENTER, OPEN-LABEL, PHASE 1/2 STUDY OF ONCT-808, A ROR1-TARGETING CAR T CELL THERAPY, IN ADULTS WITH RELAPSED/REFRACTORY (R/R) AGGRESSIVE B CELL LYMPHOMAS (BCL)



Michael Wang,¹ Patrick C Johnson,² Salim Yazji,³ Yisrael Katz,³ Angela Pietrofeso,³ James M Robinson,³ Matthew Mei,⁴ James Breitmeyer,³ Matthew Frigault,² Caron Jacobson.⁵

¹The University of Texas MD Anderson Cancer Center, Houston, TX, ²Mass General Cancer Center, Boston, MA, ³Oncternal Therapeutics, San Diego, CA, ⁴City of Hope, Duarte, CA, ⁵Dana-Farber Cancer Institute, Boston, MA.

INTRODUCTION

- Receptor tyrosine kinase-like orphan receptor 1 (ROR1) chimeric antigen receptor (CAR) expressing T-cell therapy is a promising potential treatment for aggressive B Cell Lymphoma (BCL), including patients who have relapsed following CD19 CAR T therapy.
- Although essential during embryogenesis, ROR1 has no known physiologic role in adults and is predominantly expressed on malignant cells, frequently by cancers with more aggressive features.
- The ROR1 binding moiety for ONCT-808 is derived from zilovertamab. Zilovertamab vedotin showed preliminary evidence of efficacy and no evidence of on-target off-tumor toxicity in patients with advanced B cell malignancies (Wang 2022).
- By directing CAR T cells to specifically recognize and eliminate ROR1-expressing tumor cells, this approach stands to minimize off-target toxicity while enhancing targeted destruction.

ONCT-808 Manufacturing Overview

Clinical ROR1 CAR T cell production process: closed, automated cell Processing platform (Prodigy CliniMACS 250)

- Greater than 2 billion ROR1 CAR T cells produced (> 4 billion cells) with over 60% CAR+ expression from healthy donor leukapaks
- Greater than 1.3 billion ROR1 + CAR T cells produced (3 billion total viable cells) with over 42% average CAR+ expression with patient cells
- High percentage of CAR T cells with juvenile phenotypes (stem central memory T cells) favorable for expansion and persistence in healthy donor runs

Massachusetts General Hospital

THE UNIVERSITY OF TEXAS

MDAnderson

Cancer Center

AIM AND METHODS

- To evaluate the safety and preliminary efficacy of ONCT-808, a ROR1-specific CAR T-cell therapy in R/R BCL patients including pts who failed prior CD19 CAR T.
- ONCT-808 is given as a single infusion following lymphodepletion with fludarabine and cyclophosphamide.
- Phase 1 has a standard 3+3 dose escalation design. The primary objective of Phase 1 is identifying DLTs and establishing a recommended Phase 2 dose. Phase 2 involves expansion into two parallel cohorts with a primary endpoint of ORR.
- Adverse events (AEs) are graded using CTCAE v5.0, except for cytokine release syndrome (CRS) and IEC-associated neurotoxicity syndrome (ICANS) which are based on ASCTC grading. Secondary endpoints include efficacy and pharmacokinetics. The 2014 Lugano criteria are used for response assessment.

Dana-Farber

OBJECTIVES AND ENDPOINTS

PHASE 1 PORTION

- Incidence, severity, and relationship of DLTs
- Safety and tolerability
- Selection of Phase 2 doses
- Preliminary anti-tumor activity
- Engraftment, expansion, persistence, and immunophenotype of ROR1 CAR-positive T cells

PHASE 2 PORTION

- Risk/Benefit assessment (2 doses)
- Safety and tolerability
- ORR, CR rate, and DOR
- Engraftment, expansion, persistence, and immunophenotype of ROR1 **CAR-positive T cells**

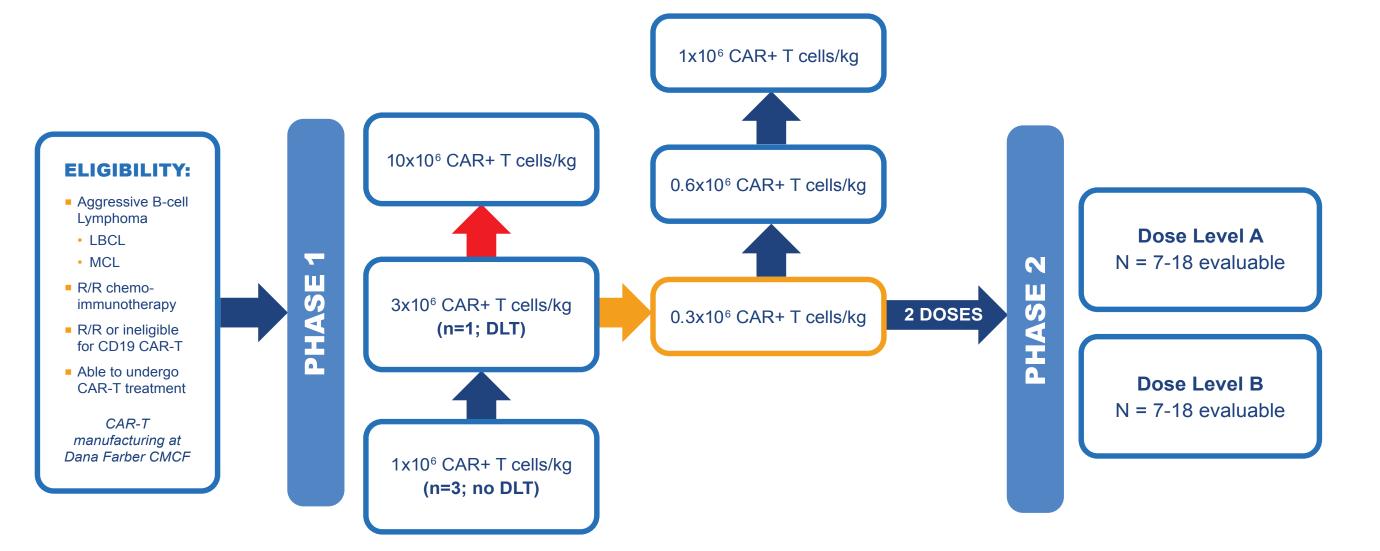
KEY ELIGIBILITY CRITERIA

INCLUSION CRITERIA

- Adults with histologically confirmed aggressive B-cell NHL (MCL, LBCL)
- Relapsed/refractory (R/R) disease without available therapy, previous CD19 CAR T-cell therapy (unless ineligible/refused)
- Measurable disease
- ECOG 0-1
- Adequate bone marrow, renal, hepatic, pulmonary function

EXCLUSION CRITERIA

- CNS involvement or CNS disease
- Systemic immunosuppressive therapy
- Unable to tolerate CAR T therapy due


- to medical condition

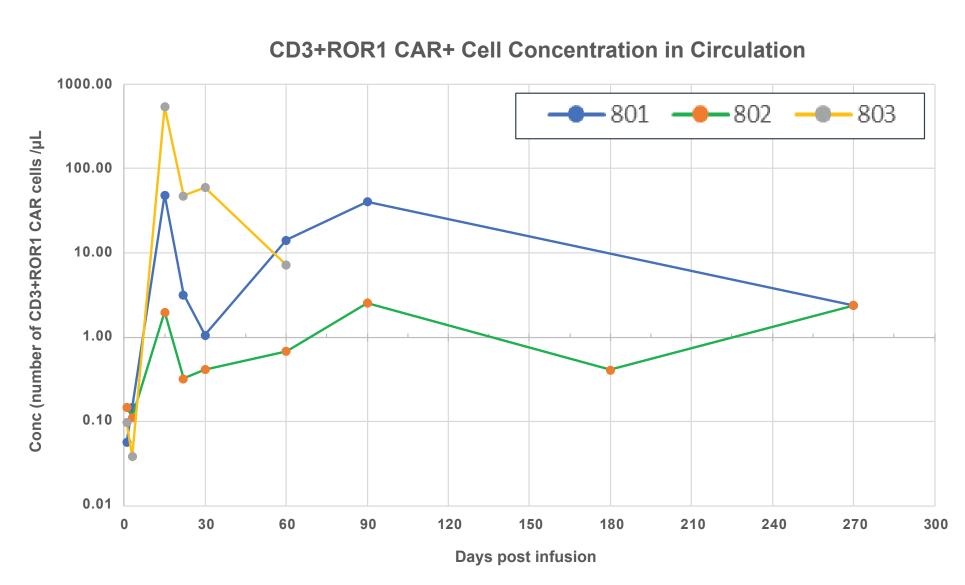
Patient Status and Safety

	Patient 801 1x10 ⁶ Car+ T cells/kg	Patient 802 1x10 ⁶ Car+ T cells/kg	Patient 803 1x10 ⁶ Car+ T cells/kg	Patient 805* 3x10 ⁶ Car+ T cells/kg
Age/Disease Type	55M with R/R MCL	57M with R/R MCL	50M with R/R MCL	80M with R/R DLBCL; Bulky Disease
Prior CD19/Progression	Brex-cel/April 2023	None	Brex-cel/July 2023	Liso-cel/March 2023
Additional PRIOR LOTs	BRIbrutinibPirobrutnib	R-CHOPVelcadeLOXO-305	R-HyperCVAD + Intrathecal (IT) chemoR-ibrutnib + IT chemo	R-CHOPR-polatuzuman vedotinLoncastuximab teserine
Bridging Therapy	RCD	None	R-Hypercytoxan+ Dex+ radiation	Dex+Prednisone
Dosed	June 2023	July 2023	September 2023	November 2023
TEAEs	G3 pneumonia	G2 CRS (SAE; resolved)	G1 CRS G3 Infection (SAE) G3 lactic acidosis	G4 CRS G3 ICANS Died on Day 8**

*Possible pretreatment occult infection with fever, procalcitonin >6x ULN, CRP was 166. **TEAE of G5 shock

ONCT-808: Phase 1/2 Study Design

LBCL: Large B-Cell Lymphoma (Diffuse LBCL NOS, Primary mediastinal LBCL, High-grade BCL, DLBCL arising from indolent lymphoma or CLL, Follicular lymphoma grade 3B, Richter's syndrome); MCL: Mantle Cell Lymphoma; CMCF: Cell Manipulation Core Facility; Represents current active cohort.


Response Assessments

	Patient 801	Patient 802	Patient 803
	1x10 ⁶ Car+ T cells/kg	1x10 ⁶ Car+ T cells/kg	1x10 ⁶ Car+ T cells/kg
Month 1	Lugano: PD	Lugano: CR	Lugano: PR
	PET-CT: PMR	PET-CT: CMR	PET-CT: CMR
Month 3	Lugano: PD	Lugano: CR	Lugano: PD
	PET-CT: PMR	PET-CT: CMR	PET-CT: PMD
Month 6	N/A	Lugano: CR PET-CT: CMR	N/A
Month 9	N/A	Lugano: PD PET-CT: PMD	N/A

PR – Partial response; PMR – Partial metabolic response; CR – Complete response; CMR – Complete metabolic response; PD – Progressive disease; PMD – Progressive metabolic disease

Note: Patient 805, treated with 3x10⁶ CAR+ cells/kg had no evidence of lymphoma on autopsy despite two 6 cm tumor masses at baseline.

ONCT-808-101 – ONCT-808 CAR T Expansion and Persistence

ONCT-808 CAR T cells expand and are persistent in all three patients from the 1 x 10⁶ CAR T cells/kg cohort up to 9 months

Expansion has been associated with response (e.g. prior Axi-Cel study, Neelapu NEJM 2017)

REFERENCES

Wang M, Barrientos JC, Furman RR, et al. Zilovertamab Vedotin Targeting of ROR1 as Therapy for Lymphoid Cancers. NEJM Evid 2022; 1 (1).

Kipps TJ. ROR1: an orphan becomes apparent. Blood 2022; 140 (14).

Specht JM, Lee S, Turtle CJ, et al. Abstract CT131: A phase I study of adoptive immunotherapy for advanced ROR1+ malignancies with defined subsets of autologous T cells expressing a ROR1-specific chimeric antigen receptor (ROR1-CAR). Cancer Res. 2018;78 (Supp 13).

CONCLUSIONS

- ROR1 CAR T is well tolerated at 1 x 10⁶ CAR + T cells/kg with promising early evidence of anti-tumoractivity.
- Following a Grade 5 TEAE, the protocol was amended with modified eligibility criteria, increased monitoring for infection, and evaluating lower doses of ONCT-808 CAR+ T cells.
- ONCT-808 is a promising CAR T cell therapy targeting ROR1 in aggressive lymphomas
- The ONCT-808-101 study is active and proceeding through dose escalation

STATUS

Partnering site

ONCT-808 is currently

active and enrolling patients

in the dose escalation phase.